The ASEM News

How to Improve Accuracy in Success and Safety Testing

How to Improve Accuracy in Success and Safety Testing

This appendix refines Proposition 4.1 by improving statistical efficiency in hypothesis testing. It minimizes false positives and optimizes rejection regions for success and guardrail metrics, ensuring more reliable decision-making.

hackernoon-

Spotify’s Approach to Multi-Metric A/B Testing Decisions

Spotify’s Approach to Multi-Metric A/B Testing Decisions

Spotify’s decision rule framework for A/B testing optimizes statistical accuracy and risk management by integrating superiority, non-inferiority, and quality tests.

hackernoon-

World Backup Day: Einfach mal machen!

World Backup Day: Einfach mal machen!

Am 31. März jährt sich der World Backup Day – zur Erinnerung daran, dass Backups wichtig sind. Wir raten: Einfach mal machen!

heise-

How Companies Decide Which Product Changes to Keep or Scrap

How Companies Decide Which Product Changes to Keep or Scrap

Extending A/B test decision rules with deterioration and quality metrics helps catch regressions and ensures experiment integrity. Spotify’s Decision Rule 2 formalizes this approach.

hackernoon-

Ensuring Reliable A/B Test Decisions with Guardrail Metrics

Ensuring Reliable A/B Test Decisions with Guardrail Metrics

A/B testing decisions must balance Type I and Type II errors. This section explains UI/IU testing principles, Bonferroni corrections, and power adjustments for non-inferiority testing.

hackernoon-

The Four Key Metrics in A/B Testing

The Four Key Metrics in A/B Testing

A/B testing relies on multiple metrics with distinct roles. Spotify’s framework categorizes them into success, guardrail, deterioration, and quality metrics, ensuring a standardized, risk-aware decision process.

hackernoon-

How Spotify Standardizes Multi-Metric Experiment Analysis

How Spotify Standardizes Multi-Metric Experiment Analysis

A/B testing with multiple outcomes requires structured decision-making. Spotify draws insights from decision theory, OECs, and clinical trials to refine its approach, ensuring reliable, scalable experimentation.

hackernoon-

Evaluating A/B Testing Decision Rules with Monte Carlo Simulations

Evaluating A/B Testing Decision Rules with Monte Carlo Simulations

Monte Carlo simulations test multi-metric A/B decision rules, revealing how alpha and power corrections affect error rates, ensuring reliability in statistical experiments.

hackernoon-

Balancing Type I and Type II Errors in A/B Testing Decisions

Balancing Type I and Type II Errors in A/B Testing Decisions

A/B testing decisions rely on statistical error control. This section explores superiority and non-inferiority tests, Bonferroni adjustments, and how multiple-testing corrections shape experiment outcomes.

hackernoon-

PI-LOLE mit umfangreichem Update auf Version 6.1

PI-LOLE mit umfangreichem Update auf Version 6.1

Pi-Hole ist eine kostenlose Open-Source-Software, die als Tracking- und Werbeblocker fungiert und bei Bedarf auch als DHCP in Ihrem Netzwerk verwendet werden kann. In Ihrem Heimnetzwerk (oder unterwegs über eine VPN-Verbindung in Ihrem Netzwerk) kann Pi-Hole im Allgemeinen für alle Geräte funktionieren, wenn Sie die PI-Hole-Installation als DNS im Router anhängen. Alternativ können Benutzer für ...

lomazoma-